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A B S T R A C T

Glyco-Mapper is a novel systems biology product quality prediction tool created using a new framework termed:
Discretized Reaction Network Modeling using Fuzzy Parameters (DReaM-zyP). Within Glyco-Mapper, users fix
the nutrient feed composition and the glycosylation reaction fluxes to fit the model glycoform to the reference
experimental glycoform, enabling cell-line specific glycoform predictions as a result of cell engineering strate-
gies. Glyco-Mapper accurately predicts glycoforms associated with genetic alterations that result in the ap-
pearance or disappearance of one or more glycans with an accuracy, sensitivity, and specificity of 96%, 85%, and
97%, respectively, for publications between 1999 and 2014. The modeled glycoforms span a large range of
glycoform engineering strategies, including the altered expression of glycosylation, nucleotide sugar transport,
and metabolism genes, as well as an altered nutrient feeding strategy. A glycoprotein-producing CHO cell line
reference glycoform was modeled and a novel Glyco-Mapper prediction was experimentally confirmed with an
accuracy and specificity of 95% and 98%, respectively. Glyco-Mapper is a product quality prediction tool that
provides a streamlined way to design host cell line genomes to achieve specific product quality attributes.

1. Introduction

Chinese hamster ovary (CHO) cells accounted for the production of
$85 billion of the $154 billion in global biotherapeutic sales in 2015
(LaMerie, 2016) because CHO cells are capable of producing large
amounts of protein, sustaining high viability, resisting viral infection,
and mimicking human product quality attributes (Jayapal et al., 2007;
Xu et al., 2011). The protein product quality largely influences the ef-
ficacy, half-life, and immunogenicity of the therapeutic protein (Walsh
and Jefferis, 2006), all of which greatly affect the patient's clinical re-
sponse. The 2013 biopharmaceutical pipeline contained 431 re-
combinant proteins and monoclonal antibodies (mAbs) in various
phases of clinical development (ABRC, 2013). Understanding and pre-
dicting the therapeutic product quality in accordance with targeted
modifications will be greatly beneficial to biopharmaceutical produc-
tion and is critical to meet quality guidelines in accordance with FDA
guidance (US DHHS FDA, 2015).

Several kinetic and data-dependent models that establish frame-
works to quantify and model glycosylation have previously been pub-
lished. The Umaña model (Umaña and Bailey, 1997) mathematically
depicted the glycosyltransferase activity of 8 enzymes, 33 species, and

33 reactions. Krambeck and Betenbaugh (2005) expanded upon the
Umaña model by incorporating more variables and models 11 enzymes,
7565 species, and 22,871 reactions, increasing the model's
complexity. Krambeck et al. (2009) further broadened the model to
incorporate 19 enzymes and more than 10,000 species to determine the
likely enzyme concentrations by generating an optimized synthetic
mass spectrum. Liu and Neelamegham (2014) further developed glycan
mass spectra analysis to construct biochemical reaction networks and
calculate the associated fluxes for both N- and O-glycosylation asso-
ciated pathways, in addition to determining enzyme activities. Spahn
et al. (2016) employed Markov chain modeling to mathematically
calculate parameters to reproduce various glycoform distributions and
did not require user-provided kinetic information. Despite the power of
current analytical methods, kinetic model parameter estimation and
validation is difficult to achieve for all relevant enzymes using current
experimental techniques. Moreover, measurement of glycan stereo-
isomers and confirmation of a glycan's specific production pathway is
not yet possible on a routine basis.

In contrast to detailed kinetic and data-driven models, genome-scale
reconstructions can model biological processes using algebraic mass
balance equations and have been successfully applied towards
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mammalian systems in many contexts (Duarte et al., 2007; Selvarasu
et al., 2010; Shlomi et al., 2008) and are now being used to study CHO
(Chen et al., 2012; Chowdhury et al., 2015; Selvarasu et al., 2012). The
current availability of the CHO genome (Xu et al., 2011) offers an op-
portunity to investigate CHO-specific product quality using a genome
scale reconstruction-based model. This type of model has reduced
computational requirements compared to detailed kinetic models, but
does not fully capture the variety of products generated by a non-
template driven process. Here we report for the first time a modeling
framework rooted in genome reconstruction but using reaction flux
flow stoichiometry, discretized variable state parameters, and mass
balances termed Discretized Reaction Network Modeling using Fuzzy
Parameters (DReaM-zyP) to predict the likely therapeutic protein
glycan patterns of the non-template driven glycosylation process. The
specific CHO glycosylation DReaM-zyP-based tool (Glyco-Mapper) in-
cludes all CHO N-glycosylation genes, as well as nucleotide sugar
synthesis, transporter, and glycosylation-relevant metabolism genes.
Glyco-Mapper models and predicts the published cell-engineered gly-
coforms from 1999 to 2014 (Goh et al., 2014; Imai-Nishiya et al., 2007;
Kanda et al., 2007; Malphettes et al., 2010; Maszczak-Seneczko et al.,
2013; Naso et al., 2010; Onitsuka et al., 2012; Sealover et al., 2013;
Tsukahara et al., 2006; Weikert et al., 1999) with an accuracy of 96%
and is currently implemented in Microsoft Excel, which does not re-
quire the user to have extensive knowledge of modeling software or
programming. The goal of Glyco-Mapper version 1.0 is to establish a
simplified framework to provide useful glycoform pattern information,
not to quantitatively predict various glycan concentrations, or levels,
apart from their presence or absence.

2. Materials and methods

2.1. Gene and glycan composition

Glyco-Mapper contains 59 N-linked glycosylation genes (Supp.
Table 1) and 92 metabolism-related genes (Supp. Table 2), describing
the central carbon metabolism (CCM), nucleotide sugar synthesis, and
nucleotide sugar transporter pathways (Supp. Fig. 1). The genes were
manually verified to be present within the CHO and Chinese hamster
genomes (Brinkrolf et al., 2013; Lewis et al., 2013; Xu et al., 2011) and
the gene sequences were obtained from the 2014 RefSeq CHO-K1 and
CH genome annotations (Hammond et al., 2012; Kremkow et al., 2015).
Most of the N-linked glycosylation genes were obtained from Xu et al.
(2011) and supplemental genes were added to the model from literature
(Bosques et al., 2010). The N-linked glycosylation enzyme functions
span the entire N-glycosylation reaction network and range from the
production of the glycan intermediate in the endoplasmic reticulum to
the degradation of the glycan outside of the Golgi. The metabolism-
related genes were identified from a published CHO CCM model (Ahn
and Antoniewicz, 2012), as were the genes involved with the nucleotide
sugar production and nucleotide sugar transport pathways (Hills et al.,
2001).

Both the KEGG database and literature were used to define the re-
actants, products, and enzymatic reaction conditions (Taniguchi et al.,
2002; Kanehisa and Goto, 2000) for each enzyme coded within the CHO
genome. However, the gene network was modeled using simplified
reaction equations to generate glycans rather than comprehensive Mi-
chaelis-Menten kinetics. The Glyco-Mapper flux flow stoichiometry is
based upon the definition of glycans by their monosaccharide compo-
nents (Supp. Table 5), which glycosylation genes are required to pro-
duce each glycan (Supp. Table 6), the components each glycan requires
of the CCM reaction network (Supp. Table 7), and glycosylation gene
activities affecting the kinetic concentration of each specific glycan
(Supp. Table 8). Glyco-Mapper models 448 non-stereospecific glycans
(Supp. Table 5) representing more than 2600 distinct, stereospecific
glycans. Stereoisomers are considered identical for this work because
most current analytical glycan methods do not distinguish

stereospecific glycans and there is no reported association between
stereoisomers and biotherapeutic characteristics.

2.2. Experimental

A CHO-DUKX cell line expressing secreted alkaline phosphatase
(SEAP) (Hayduk and Lee, 2005) was adapted to serum-free, suspension
culture in 125mL shake flasks (Corning, Oneonta, NY) containing
28mL SFM4CHO medium (Hyclone Laboratories Inc., Logan, UT). The
cells were cultured by routine passaging at 4 day intervals. Cultures
were then seeded at 3·105 cells/mL and incubated with orbital agitation
at 120 rpm in a 37 °C cell culture incubator with 5% CO2 and 80% re-
lative humidity. Cells were counted using a Countess II FL hemocyt-
ometer (ThermoFisher, Rockford, IL) with viability determined by the
Trypan blue (Sigma-Aldrich, St. Louis, MO) exclusion method. The cells
were harvested on day 3 and the supernatant was separated from the
residual cells by centrifugation (180g, 6 min) and stored at − 20 °C
until further use.

Supernatant samples were thawed simultaneously and filtered
through a 0.22 µm filter (Millipore, Cork, Ireland). A SEAP-activity
assay (ThermoFisher, Rockford, IL) was performed on all samples to
quantify the SEAP protein concentration. SEAP was purified using a
Reactive Green 19 pseudo-affinity chromatography column, generated
according to the optimized protocol described by Ouyang et al. (2007).
Briefly, Sepharose™ 6B (GE Healthcare, Uppsala, Sweden) is hydrated
and reacted with Reactive Green 19 (Sigma-Aldrich, St. Louis, MO),
Na2CO3 (Sigma-Aldrich, St. Louis, MO), and 20% NaCl (Fisher, Fair
Lawn, NJ), incubated for 48 h, and thoroughly rinsed with deionized
water. The matrix is equilibrated in ethanolamine (Sigma-Aldrich, St.
Louis, MO) for 12 h, rinsed with water, and stored at 4 °C. SEAP is
loaded onto the column for 8 h, washed with Tris buffer (Bio-Rad,
Hercules, CA), eluted with Na2HPO4 buffer (Fisher, Fair Lawn, NJ), and
the column is regenerated. The purified SEAP concentration was again
measured by the SEAP-activity assay and 200 µg of SEAP per sample
was concentrated using 10 kDa centrifugation filters (Waters, Boston,
MA) for the permethylation assay. Briefly, SEAP was denatured and
digested with trypsin (Promega, Madison, WI) and the glycans were
cleaved by N-glycanase (ProZyme, Hayward, CA). The cleaved glycans
were purified with Hypersep Hyper Carb SPE cartridges (ThermoFisher,
Rockford, IL) using 5% v/v acetonitrile with 0.1% v/v TFA as a wash
and 50% acetonitrile with 0.1% v/v TFA to elute the glycans. The
elution solution was evaporated under airflow and the glycans were
reconstituted and permethylated using methyl iodide in the presence of
NaOH and DMSO. The permethylated glycan samples were first cleaned
up using liquid-liquid extraction with chloroform and then Sep-Pak PS2
SPE cartridges (Waters, Milford, MA) with elution fractions in 15%,
35%, 50%, and 75% acetonitrile. Eluted fractions were evaporated with
a vacuum concentrator, then resuspended in 25 µL of 80% methanol.
MALDI-TOF glycan analysis was performed with 10,000 shots at 5000
laser power in positive ion reflector mode with 2,5-dihydroxybenzoic
acid matrix using a 4800 MALDI TOF/TOF mass spectrometer (ABSciex,
Framingham, MA). The relative glycan percentage was determined as
the ratio of the individual glycan peak height to the sum of all glycan
peak heights (Supp. Figs. 2, 3).

GnT-II knockdown was performed using transfection of GnT-II (
CGAAUACCCUGACUCCUUUdTdT) and negative control #1 siRNA
(Sigma-Aldrich, St. Louis, MO) using Lonza transfection Cell Line
Nucleofector Kit V (Lonza, Basel, Switzerland). GnT-II knockdown was
confirmed by qRT-PCR (Supp. Fig. 4) using the TaqMan® RNA-to-Ct 1-
Step Kit (Applied Biosystems, Foster City, CA), a probe (PrimeTime 5′ 6-
FAM/ZEN/3′ IBFQ), and primers (5′-GGGCATTAACGAAGTCCTA
GTC-3′; 5′-CAGCTGAATGCTGAATGGAAAG-3′) (IDT, Coralville, IA).
qRT-PCR was performed in triplicate on a Cepheid SmartCycler II
(Cepheid, Sunnyvale, CA).
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3. Theory/calculations

3.1. Glyco-Mapper equations, inputs, and outputs

A draft reconstruction of the glycosylation, metabolism, and nu-
cleotide sugar transport systems was created using the CHO-K1 and
Chinese hamster genome annotations, comprehensive reaction data-
bases for candidate enzymatic functions, and published experimental
data. To follow the genome reconstruction methodology, glycosylation
genes were organized into functional classes, a CHO-specific metabolic
map (Supp. Fig. 1) was defined, and substrate and cofactor usage,
neutral enzymatic reactions, gene and reaction localization, hetero-
meric enzyme complexes, isozyme functionalities, intracellular trans-
port mechanisms, and supporting metabolic reactions were all verified.
The mathematical model was created using media feed components,
fuzzy enzyme parameters (0−5) representing each enzyme's flux to
determine the likely glycoform composition (a fuzzy parameter is the
quantitative value of a variable that has been transformed to a dis-
cretized parameter state within bins) (Sokhansanj et al., 2009), and
simplified enzyme reaction kinetics dependent upon the discretized
parameter values (that is, a reaction rate that is a single discrete value
rather than modeled using, for example, Michaelis-Menton rate ex-
pressions). Unbalanced or missing reactions as well as reaction direc-
tionality and limitations were identified and rectified. The Glyco-
Mapper flux parameters emulate the transcriptomic and proteomic data
(if available). If the fluxes are not measured, the parameters are set to
minimize the number of differences between the experimental re-
ference glycoform and the resulting Glyco-Mapper glycoform, enabling
one to predict the biotherapeutic glycosylation phenotype from single-
gene (or multi-gene) changes in a method similar to Khodayari et al.
(2014). Specifically, the collection of glycans in production within the
cell is initially calculated by evaluating the algorithms demonstrated in
Supp. Tables 5–7 per the reactions defined in Supp. Tables 1–2 to model
the active glycosylation and CCM gene fluxes. The collection of glycans
is then altered using the fuzzy enzyme parameters and simplified en-
zyme reaction kinetics as listed in Supp. Table 8 to predict a final
glycoform.

Glyco-Mapper inputs include the type of recombinant protein (mAb
or non-mAb) and a cellular location of the glycoprotein (secreted or
intracellula because both parameters affect the potential glycoform.
The input list of media sugar components enables nucleotide sugar
reaction metabolism calculations and permits the calculation of nu-
cleotide sugar production and availability as additional input variables.
Each glycosylation and metabolism gene parameter is an input variable
that accounts for the flux of the corresponding enzyme, discretely
ranging in value between 0 and 5, to determine the potential glycoform
composition using flux profile fitting. Parameter values are adapted
from transcriptomic data, but if data is not available, the input para-
meters were selected empirically in a manual and iterative process in
accordance with experimental observations to achieve minimal differ-
ences between the predicted and experimental reference glycoforms.

Glyco-Mapper outputs include a list of the predicted glycoform
glycan composition as well as a count of the glycans within each gly-
coform. Glyco-Mapper generates four glycoform lists dependent upon
two different parameters, glycan classification (the individual glycans
(A3G1, A3G2, A3G3) or glycan monosaccharide groupings (A3G)), and
secretion classification (the likely secreted glycoform (glycans to be
secreted from the cell) or comprehensive intracellular glycoform com-
position (glycans that will not be secreted from the cell)). Each com-
bination of parameters yields a slightly different glycoform view and
understanding of the glycosylation reaction network. Lastly, an op-
tional user-selected glycan is predicted to be present or absent in the
final glycoform, and if absent, the metabolism or glycosylation genes
preventing the glycan's production are identified. Glyco-Mapper in the
current form is only able to predict each glycan in a binary form
(presence or absence), not the various quantitative glycan

concentrations or levels. This feature is a result of the lack of traditional
enzymatic rate equations (Michaelis-Menten kinetics) and was done
with the goal of establishing Glyco-Mapper version 1.0 as a glycosyla-
tion network prediction tool that combines ease of use with CHO-spe-
cific genomic accuracy.

3.2. Statistical information

For each predicted glycoform, the accuracy, specificity, and sensi-
tivity statistics are solely representative of the predicted glycoforms,
and not the reference glycoforms or any combination thereof. The ac-
curacy percentage represents the percentage of correct glycan predic-
tions within the experimentally-modified glycoform and was calculated
as the sum of experimentally-validated, present and absent glycans
predicted divided by the total number of glycans within the glycoform.
The specificity percentage represents the true negative prediction rate,
calculated as the number of both predicted and experimentally absent
glycans divided by the total number of experimentally absent glycans.
The sensitivity percentage represents the true positive prediction rate,
calculated as the number of both predicted and experimentally present
glycans divided by the total number of experimentally present glycans.
The delta accuracy percentage represents the accuracy rate of the gly-
cans that changed either their prediction or experimental status be-
tween the reference and predicted glycoforms, calculated as the number
of correctly predicted glycans that changed status divided by the total
number of glycans that changed status. The relative glycan composition
deemed to be statistically significant and a non-minor peak was a
composition greater than 1% for all literature and experimental cal-
culations in a method similar to Fukuta et al. (2001).

The GnT-II siRNA knockdown qRT-PCR data was analyzed as tech-
nical triplicates of biological triplicates (Supp. Fig. 4). The results were
statistically analyzed in JMP and the two sample one-sided t-test was
conducted assuming unequal variances with an alpha of 0.05 and re-
sulting in p < 0.0001. The difference between the average GnT-II
knockdown and negative control samples was 2.51, the t ratio was 7.5,
the standard error difference was 0.335, and the degrees of freedom
was 15.4.

4. Results

Various cell- or glycoform-engineering strategies (metabolic and
glycosylation gene knockouts, knockdowns, or overexpressions) in CHO
cell lines have been reported and each of these changes results in an
altered recombinant protein glycoform. Between 1999 and 2014, ten
publications (Goh et al., 2014; Imai-Nishiya et al., 2007; Kanda et al.,
2007; Malphettes et al., 2010; Maszczak-Seneczko et al., 2013; Naso
et al., 2010; Onitsuka et al., 2012; Sealover et al., 2013; 2007;
Tsukahara et al., 2006; Weikert et al., 1999) describe an engineered
change in glycosylation-related gene expression with an accompanying
characterization of the resulting glycoform changes from the reference
glycoform. These papers collectively altered nine genes affecting eight
different nucleotide sugar enzymatic reactions in various combinations
among CHO cell lines producing both mAb and non-mAb glycoproteins.
The alterations examined in these publications did not extend to the
GalNAc or Gal-alpha-Gal portions of the glycoform (448 glycans) that
this work is capable of predicting. Thus, the detailed glycoforms are
limited to either 156 glycans (non-mAb glycoforms) or 40 glycans (mAb
glycoforms). Glyco-Mapper predicted each altered glycoprofile starting
with the optimized parameters from the appropriate reference glyco-
form and then the predicted results were compared against each pub-
lished glycoform to establish a 96.2% glycan prediction accuracy (1547
of 1608 glycans). The average predicted glycoform sensitivity, specifi-
city, and delta accuracy statistics are 85%, 97%, and 85%, respectively
(Table 1). The following sections illustrate the application of the Glyco-
Mapper tool towards four different examples of glycoform-engineering
strategies from among those reported in the literature and one novel
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glycoform-engineering modification. The fuzzy enzyme parameters
from Supp. Tables 1 and 2 and media feed components associated with
each of the pictured examples are listed in Supp. Table 9.

The Glyco-Mapper figures (e.g. Supp. Fig. 5, Fig. 1, etc.) are shade-,
shape-, and color-coded and the way to decipher each figure is detailed
here. The color of each gene within the “N-Glycan Genes” box corre-
sponds with the similarly colored arrows in the figure, detailing the

gene responsible for the enzymatic alteration illustrated. The color and
shape of each monosaccharide within the “Monosaccharides” box
identifies the monosaccharides that compose each of the pictured gly-
cans. The “Legend” identifies each glycan's Glyco-Mapper predicted and
reported experimental status. Specifically, glycans predicted by Glyco-
Mapper to be present in the final glycoform (Model: + column) are
opaque; whereas, glycans predicted by Glyco-Mapper to be absent from

Table 1
The average accuracy, sensitivity, specificity, and delta accuracy statistics for each cell-engineered glycoform prediction. The average is greater than 80% for all statistics and greater than
95% for both the overall accuracy and specificity. The predictions illustrated in the text are denoted with a (*) and in the Supplemental information with a (‘). Genes within parentheses in
the following table and figures, e.g. (Fut8), were not genetically altered by the authors of the original publications, but the predicted enzyme flux was altered by one integer to obtain a
predicted glycoform more aligned with the experimental glycoform.

Author, Year Gene(s) Accuracy Sensitivity Specificity Delta accuracy

Onitsuka et al., 2012* ST6Gal1 92.5% 83.3% 94.1% 50.0%
Goh et al., 2014* GnT-I/(Fut8) 93.6% 78.6% 95.1% 81.8%
Kanda et al., 2007′ Fut8 97.5% 100.0% 97.3% 100.0%
Kanda et al., 2007′ GMDS 97.5% 100.0% 97.3% 100.0%
Kanda et al., 2007* GMDS/Fuc Feed/(Fut8) 97.5% 100.0% 97.3% 100.0%
Maszczak-Seneczko et al., 2013′ SLC35A3/(GnT-II) 98.7% 90.0% 99.3% 83.3%
Maszczak-Seneczko et al., 2013′ β4Galt/(GnT-II) 98.1% 92.3% 98.6% 85.7%
Maszczak-Seneczko et al., 2013* β4Galt/SLC35A3/(GnT-II) 98.7% 83.3% 100.0% 90.9%
This work GnT-II 94.9% 77.3% 97.8% 75.0%
Malphettes et al., 2010 Fut8 92.5% 85.7% 93.9% 87.5%
Tsukahara, 2006 Fut8 97.5% 100.0% 97.3% 100.0%
Naso et al., 2010 SiaA 97.5% 100.0% 97.3% 100.0%
Sealover et al., 2013 GnT-I 92.5% 0.0% 97.4% 100.0%
Imai-Nishiya et al., 2007 Fut8/GMDS 97.5% 100.0% 97.3% 100.0%
Weikert et al., 1999 β4Galt 95.5% 87.5% 95.9% 0.0%
Weikert et al., 1999 ST3Gal3 94.9% 85.7% 95.3% 0.0%
Weikert et al., 1999 β4Galt/ST3Gal3 96.2% 81.8% 97.2% –
Average 96.2% 84.6% 97.2% 84.7%

Fig. 1. The Glyco-Mapper prediction of the expression of ST6Gal1 based on the Onitsuka et al. reference glycoform (Supp. Fig. 5). The sialylated glycans FA2G2S1 and FA2G2S2 are
correctly predicted to be experimentally present in this gain-of-function glycoform engineering strategy. The majority of glycans (32) were correctly predicted to be absent while five of
the six experimentally measured glycans were correctly predicted by Glyco-Mapper to be present, as identified by the “Legend”.
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the final glycoform (Model: - column) are translucent. Glycans reported
to be experimentally present in the final glycoform are pictured as
shown in the [Expt. +] row; whereas, glycans reported to be experi-
mentally absent from the final glycoform are pictured as shown in the
[Expt. –] row, based on the Glyco-Mapper prediction. Experimental
glycan measurements that disagree with the Glyco-Mapper predictions
are boxed; whereas, experimental measurements that agree with the
Glyco-Mapper predictions are not boxed. The glycan count for each
prediction and experimental measurement combination is shown in
another box and the accuracy percentage is listed at the top-left corner
of the statistics box.

4.1. Strategy 1: Expression of heterologous glycosyltransferases (e.g.
ST6Gal1)

Novel glycans may be produced, or a glycoform distribution may be
modified, when non-native glycosylation genes are expressed in a host.
Glyco-Mapper successfully replicated and predicted the reference and
engineered glycan distributions, respectively, as reported by Naso et al.
(2010) and Onitsuka et al. (2012). Onitsuka et al. (2012) expressed
ST6Gal1 to increase sialylation, thereby potentially increasing the IgG's
biotherapeutic in vivo half-life. Glyco-Mapper replicated the wild type
glycoform (Supp. Fig. 5) with 39 of 40 correct glycans (3 of 4 present;
36 of 36 absent). When ST6Gal1 expression was estimated from
Onitsuka et al. (2012) (Onitsuka's Fig. 2 and supporting text), the in-
creased ST6Gal1 flux was modeled in Glyco-Mapper by increasing the
ST6Gal1 parameter from 0 to 3 and Glyco-Mapper predicted (Fig. 1) 37
of 40 glycans correctly (5 of 7 present; 32 of 33 absent). The predicted
IgG glycoform resulting from the altered heterologous glycosyl-
transferase flux was accurate, sensitive, and specific. Supp. Fig. 14

contains screenshots of Glyco-Mapper, detailing how the results shown
in Supp. Fig. 5 and Fig. 1 were obtained.

4.2. Strategy 2: Genetic manipulation of glycosyltransferases (e.g. GnT-I)

Genome editing tools are increasingly being used to knockdown,
knockout, or overexpress targeted glycosylation genes and alter bio-
therapeutic glycoforms. Glyco-Mapper successfully replicated studies
by Kanda et al. (2007), Weikert et al. (1999), Malphettes et al. (2010),
Sealover et al. (2013), Goh et al. (2014), Maszczak-Seneczko et al.
(2013), and Tsukahara et al. (2006). In particular, Goh et al. (2014)
investigated the effect of GnT-I expression in a GnT-I knockout CHO cell
line with the goal of increasing the sialylation of the glycoprotein er-
ythropoietin (EPO). Glyco-Mapper accurately replicated 149 of 156
glycans (2 of 5 present; 147 of 151 absent) for the wild type (GnT-I
knockout) glycoform (Supp. Fig. 6); whereas Glyco-Mapper predicted
146 of 156 glycans correctly (11 of 18 present, 135 of 138 absent) when
the GnT-I overexpression was estimated through an increased GnT-I flux
(Fig. 2) as well as a slight increase of the Fut8 flux. The predicted EPO
glycoform resulting from the altered glycosyltransferase flux was highly
accurate and specific.

4.3. Strategy 3: Genetic manipulation of glycosyltransferase and
metabolism genes (e.g. GMDS and Fut8) and Nutrient Feeding Modifications
(e.g. Fucose-Feed)

The knockout of a native metabolism gene, or the alteration of a
media feed (nutrient composition), can change cellular fluxes and result
in a modified glycoform. Two examples of this approach (Kanda et al.
(2007) and Imai-Nishiya et al. (2007) were successfully predicted by

Fig. 2. The Glyco-Mapper prediction of the GnT-I overexpression based on the Goh et al. reference glycoform (Supp. Fig. 6). The Fut8 flux was slightly increased. Multiple novel bi-
antennary (FA2G2, FA2G2S1, and FA2G2S2), tri-antennary (FA3G3, FA3G3S1, FA3G3S2, and FA3G3S3), and tetra-antennary (FA4G4, FA4G4S1, and FA4G4S2) glycans are all correctly
predicted to be experimentally present in this gain-of-function glycoform engineering strategy. The monosaccharide and glycan legends in Fig. 1 are not pictured but still applicable.
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Glyco-Mapper. Using a mAb (IgG1)-producing CHO cell line, Kanda
et al. (2007) independently knocked out GMDS, Fut8, and GMDS with
an altered nutrient-feed containing fucose, thereby affecting the anti-
body-dependent cellular cytotoxicity through changes in fucosylation
(Shinkawa et al., 2003). Glyco-Mapper replicated the wild type glyco-
form (Supp. Fig. 7) with 37 of 40 correct glycans (5 of 8 present, 32 of
32 absent). When both the GMDS knockout (Supp. Fig. 8) and Fut8
knockout (Supp. Fig. 9) were independently incorporated by forcing the
respective fluxes to zero, Glyco-Mapper accurately predicted 39 of 40
glycans correctly (3 of 4 present; 36 of 36 absent). Glyco-Mapper in-
corporated the nutrient-feed containing fucose and the GMDS knockout
by forcing the GMDS flux to zero (Fig. 3) and accurately predicted 39 of
40 glycans correctly (3 of 4 present; 36 of 36 absent) when accounting
for a slight increase of the Fut8 flux. The predicted IgG1 glycoforms
resulting from the modified feeding strategy and the altered metabolic
and glycosyltransferase gene fluxes were all highly accurate, sensitive,
and specific.

4.4. Strategy 4: Genetic manipulation of glycosyltransferases and nucleotide
sugar transporter genes (e.g. SLC35A3 and β4Galt)

Altered nucleotide sugar transport gene fluxes affect the glycoform,
whether altered in conjunction with a glycosyltransferase or in-
dependently. Glyco-Mapper successfully predicted the glycoprotein
glycoforms reported by Maszczak-Seneczko et al. (2013) who knocked
down SLC35A3, the gene responsible for UDP-GlcNAc transport where
reduced transport results in reduced glycoprotein glycan antennarity,
and who knocked out β4Galt, the genes responsible for the addition of
Gal monosaccharides where terminal Gal monosaccharides reduce the
biotherapeutic's half-life (Ashwell and Morell, 1974). Glyco-Mapper
accurately replicated 153 of 156 glycans (10 of 12 present, 143 of 144
absent) for the wild type glycoform (Supp. Fig. 10); whereas Glyco-

Mapper predicted 153 of 156 glycans correctly (12 of 14 present; 141 of
142 absent) when the β4Galt knockout was incorporated by forcing the
β4Galt fluxes to zero (Supp. Fig. 11) and incorporating a slight decrease
of the GnT-II flux. Glyco-Mapper predicted 154 of 156 glycans correctly
(9 of 10 present; 145 of 146 absent) when the SLC35A3 knockdown was
incorporated after decreasing the SLC35A3 flux (Supp. Fig. 12) from the
reference value of 3 (Supp. Figs. 10) to 2, 1, or 0 (the SLC35A3 flux of 2
prediction is shown in Supp. Fig. 12 but the SLC35A3 flux of 1 and 0
predictions are not shown as all three predictions are identical) as well
as making a minor adjustment to the GnT-II flux. Glyco-Mapper ac-
counted for the combined SLC35A3 knockdown and β4Galt knockouts
(Fig. 4) accurately by also predicting 154 of 156 glycans correctly (10 of
10 present; 144 of 146 absent) after forcing the β4Galt fluxes to zero,
decreasing the SLC35A3 flux in addition to slightly decreasing the GnT-
II flux. The predicted glycoprotein glycoforms resulting from the altered
nucleotide sugar transporter and glycosyltransferase gene fluxes were
accurate, sensitive, and specific.

4.5. Novel experimental confirmation using Strategy 2: Genetic
manipulation of glycosyltransferases (e.g. GnT-II)

After confirmation of Glyco-Mapper's ability to accurately predict
reported changes in literature, Glyco-Mapper's ability to predict a
change not previously defined in literature was experimentally tested.
The gene GnT-II was knocked down using short interfering RNA
(siRNA) with the goal of inhibiting bi-antennary glycan formation.
Glyco-Mapper accurately replicated 144 of 156 glycans (11 of 14 pre-
sent, 133 of 142 absent) for the wild type SEAP glycoform (Supp.
Fig. 13); whereas Glyco-Mapper predicted 148 of 156 glycans correctly
(17 of 20 present; 131 of 136 absent) when the GnT-II knockdown was
estimated by forcing a GnT-II flux decrease (Fig. 5). The predicted SEAP
glycoform resulting from the altered flux of the glycosyltransferase

Fig. 3. The Glyco-Mapper prediction of the fucose feeding strategy coupled with the knockout of GMDS based on the Kanda et al. reference glycoform (Supp. Fig. 7). The Fut8 flux was
slightly increased. The fucosylated bi-antennary glycans FA2, FA2G1, and FA2G2 are correctly predicted to be experimentally present in this metabolic and glycosylation engineering
strategy. The N-glycan gene, monosaccharide, and glycan legends in Fig. 1 are not pictured but still applicable.
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GnT-II was novel as well as highly accurate and specific.

5. Discussion

The Glyco-Mapper tool developed via the DReaM-zyP method builds
upon a protocol for the generation of high-quality genome-scale me-
tabolic reconstructions (Thiele and Palsson, 2010) by incorporating flux
flow stoichiometry calculations to predict glycoforms. Manual re-
construction and refinement of the glycosylation reaction network, as
well as of the relevant CCM and nucleotide sugar transport and pro-
duction metabolic pathways, was accomplished using the CHO-K1 and
Chinese hamster genome annotations. The incorporation of each media
feed sugar and use of discrete, quantized reaction flux parameters for
each gene in the reaction network, updated the reconstruction database
into Glyco-Mapper, a flux profile modeling tool. Glyco-Mapper provides
cell line specific and experimentally relevant discretized glycoform
predictions resulting from flux alterations affecting fucosylation, sia-
lylation, galactosylation, antennarity, nucleotide sugar transport, and
nucleotide sugar metabolism.

The Glyco-Mapper predicted glycoforms resulting from the over-
expression, knockout, and knockdown of glycosylation, nucleotide
sugar transporter, and metabolism genes demonstrated an accuracy and
specificity of greater than 95% and an average sensitivity and delta
accuracy of 85% when compared to experiment. Both engineered mAb
glycoforms (nine alterations) and non-mAb glycoforms (eight altera-
tions) were predicted with an average accuracy, sensitivity, and spe-
cificity of 96%, 85%, and 97%, respectively (Supp. Table 3). The high
predictive delta accuracy and the consistent accuracy, sensitivity, and
specificity statistics for both mAb and non-mAb biotherapeutics are
indicative of the reliable Glyco-Mapper predictions.

Glyco-Mapper is an experimentally applicable tool that is able to
accurately predict cell line-specific glycoforms due to the tool's ability
to produce numerous cell line-specific reference glycoforms. These di-
verse reference glycoforms contain a wide range of unique experi-
mental characteristics, the variety of which are briefly examined in the
five reference glycoforms presented in this report. Glyco-Mapper re-
plicated both large and small glycoforms, from 3 glycans (Supp. Fig. 5)
to 20 glycans (Supp. Fig. 13). Glyco-Mapper simulated reference gly-
coforms with glycans localized to both specific and diverse subclasses,
from only one bi-antennary subclass (Supp. Fig. 7) to five subclasses
(Supp. Fig. 10). Glyco-Mapper replicated reference glycoforms con-
taining glycans that are very similar in structure and also very different
in structure, as evidenced by the maximum number of enzymatic re-
actions between any two measurable glycans in the reference glycoform
that ranged from 2 reactions (catalyzed by 1 enzyme) (Supp. Fig. 5) to
15 reactions (catalyzed by 8 different enzymes) (Supp. Fig. 10). The
range of these three characteristics depicted by these five reference
glycoforms demonstrate Glyco-Mapper's significant versatility. This
versatility is currently limited to the binary prediction (presence or
absence) of each glycan and future improvements will include the
ability to predict the glycan concentration within each glycoform.

Glyco-Mapper is able to successfully predict cell engineered glyco-
forms using the accurate cell-line specific reference glycoforms. The
Glyco-Mapper predicted glycoforms achieve a range of quantized gly-
coform patterns and all of the glycosylation reaction network fluxes are
adjustable, individually and in combination with other genes. Glyco-
Mapper predicted quantized glycoform patterns consistent with distinct
mAb (Fig. 3) and non-mAb (Supp. Fig. 11) experimental glycoform
patterns. Glyco-Mapper predicted significant glycan composition
changes resulting from GnT and UDP-GlcNAc transporter gene

Fig. 4. The Glyco-Mapper prediction of the SLC35A3 knockdown and β4Galt knockout strategy based on the Maszczak et al. reference glycoform (Supp. Fig. 10). The GnT-II flux was
decreased by one integer. The agalactosylated glycans A2, FA2, A1, and FA1 are all correctly predicted to be experimentally present in this complex glycosylation engineering strategy.
The monosaccharide and glycan legends in Fig. 1 and N-glycan gene key in Fig. 2 are not pictured but still applicable.
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alterations (Figs. 1 and 4, respectively) as well as subtle, yet bio-
pharmaceutically-relevant composition changes due to STGal and Fut8
gene alterations (Fig. 1 and Supp. Fig. 11, respectively). The number of
predictive glycan changes resulting from an adjusted gene parameter is
partially dependent on the reference glycoform as well as on the degree
to which gene parameter flux(es) is/are adjusted. While publications
typically report engineered glycoform changes, Glyco-Mapper demon-
strates an accurate flux representation by predicting a maximum of 15
predicted glycan changes (Fig. 2) as well as a minimum of zero glycan
changes (not pictured) for the predictions listed in Table 1. Glyco-
Mapper's ability to accurately predict engineered glycoforms enables a
wide variety of industrially-relevant glycoforms to be investigated.

Glyco-Mapper predicted glycans may be classified as incorrect for a
multitude of reasons, including biological variance within the cellular
glycosylation process; variable glycan detection sensitivity of experi-
mental equipment; and unaccounted substrate, product, enzymatic, or
other cellular inhibition mechanisms. Specifically, Glyco-Mapper in-
correctly predicts glycans in one of two ways: glycans predicted to be
measured that were not experimentally observed and glycans predicted
to be absent that were experimentally detected. Glyco-Mapper hs in-
correctly predicted 24 of 548 glycans (4%) in Figs. 1–5 and the 24
glycans are listed in Supp. Table 4. More than half of these incorrectly
predicted glycans are one (9 glycans) or two (4 glycans) active enzyme
reactions away from glycans correctly predicted to be present, making
most incorrect predictions “slightly off-target”. Other errors may be
indicative of unidentified inhibitory factors affecting the final glyco-
form, as opposed to biological variance or nonsignificant glycan de-
tection. One potential example of an unaccounted factor is the incorrect
A2G2S2 prediction in Fig. 1. The reference glycoform was fully fuco-
sylated and after ST6Gal1 overexpression, the predicted glycoform was

also fully fucosylated, yet A2G2S2 was reported and composed a sig-
nificant percentage (~ 20%) of the experimental glycoform.

Glyco-Mapper can predict the effect of specific gene alterations. It
can also help understand the effect of altered fluxes that were not ex-
perimentally manipulated or regulated. Within each of Sections
4.2–4.4, one gene flux not manipulated by the authors was slightly
altered (by only one integer from the reference glycoform parameter
activity) to achieve a more optimal fit between the predicted glycoform
and the resulting experimental glycoform. The Fig. 4 prediction
(Section 4.4 –Maszczak-Seneczko et al., 2013) decreased the GnT-II flux
one parameter unit, from 4 to 3. The decreased GnT-II activity enabled
the production of single-antennae glycans, greatly improving the gly-
coform prediction accuracy. This observation is consistent with the
GnT-II flux being impacted by the decreased amount of UDP-GlcNAc
available, resulting from the documented knockdown of SLC35A3. The
Fig. 3 prediction (Section 4.3 – Kanda et al. 2007) increased the Fut8
flux one parameter unit, from 2 to 3. The increased Fut8 activity en-
abled the production of solely fucosylated glycans, greatly improving
the glycoform prediction accuracy. This observation is consistent with
the Fut8 flux being altered by the amount of GDP-Fuc available, re-
sulting from the documented knockout of GMDS and the feeding of
fucose. The Fig. 2 prediction (Section 4.2 – Goh et al., 2004) increased
the Fut8 flux one parameter unit, from 3 to 4. The increased Fut8 ac-
tivity enabled the production of solely fucosylated glycans, greatly
improving the glycoform prediction accuracy. This discrepancy could
indicate that either Glyco-Mapper is not reflective of the correct net-
work (as Fut8 and GnT-I are not linked by multi-enzyme complexes, but
both are located within the Golgi) or that there is an unidentified in-
crease in fucosylation activity.

Fig. 5. The Glyco-Mapper predicted GnT-II knockdown glycoform is based on the SEAP reference glycoform (Supp. Fig. 13). The single antennae glycans A1, FA1, A1G1, and A1G1S1 are
all correctly predicted to be experimentally present in this glycoform engineering strategy. The monosaccharide and glycan legends in Fig. 1 and N-glycan gene key in Fig. 2 are not
pictured but still applicable.
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6. Conclusions

Glyco-Mapper predicts glycoforms with high accuracy, specificity,
and selectivity after targeted gene manipulations have occurred by
combining the power of genome-scale reconstruction with discretized
flux flow stoichiometric pathway modeling. Published glycosylation,
nucleotide sugar metabolism, and nucleotide sugar transporter gene
modifications have all been modeled and the predicted glycoforms
averaged a 96% accuracy in specific glycan prediction when compared
with experimental results. Upon examination and analysis of the variety
of glycoform engineering strategies, the altered glycosylation mod-
ifications were correctly predicted regardless of the targeted glycosy-
lation modification or type of biotherapeutic. Glyco-Mapper facilitates
an understanding of not only the possible effects, but the likely effects
of altering a gene's flux upon the reaction network and the final gly-
coform through gene knock-outs, knock-downs, or overexpression. The
ability to make accurate predictions should enable data-driven selection
of beneficial genetic alterations that would be useful to the bio-
pharmaceutical manufacturing community. The DReaM-zyP metho-
dology will enable improved prediction and understanding of biological
processes in addition to glycosylation, such as complex signaling net-
works or the many epigenomic modifications that are currently difficult
to mathematically model using published cellular data.
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